Название спиртов по химии

История открытия спирта

История спирта уходят корнями в глубокую древность, ведь согласно археологическим находкам уже 5000 лет тому назад люди умели делать алкогольные напитки: вино и пиво. Делать то умели, но не до конца понимали, какой же такой волшебный элемент имеется в этих напитках, который делает их хмельными. Тем не менее, пытливые умы ученых прошлого не раз пытались выделить из вина этот волшебный компонент, отвечающий за его алкогольность (или крепость, как мы говорим сейчас).

И вскоре обнаружилось, что спирт можно выделить при помощи процесса дистилляции жидкости. Дистилляция спирта это такой химический процесс в ходе, которого летучие компоненты (пары) испаряются, а из перебродившей смеси и получается спирт. К слову сам процесс дистилляции впервые был описан великим ученым и натурфилософом Аристотелем.

Алхимики более поздних времен усовершенствовали процесс дистилляции и получения спирта, например французский врач и алхимик Арно де Вильгерр в 1334 году разработал удобную технологию получения винного спирта. А уже с 1360 года его наработки переняли итальянские и французские монастыри, которые начали активно производить спирт, называемый ими «Aqua vita» – «живая вода».

В 1386 году «живая вода» впервые попала в Россию (точнее Московию, как тогда называли это государство). Привезенный генуэзским посольством в качестве презента царскому двору спирт очень понравился тамошним боярам (впрочем, и не только боярам). А «живая вода» впоследствии стала основой всем известного алкогольного напитка (употреблять который мы вам, однако, решительно не рекомендуем).

Но вернемся к химии.

Оглавление

  1. Электронное строение функциональных групп кислородсодержащих органических веществ (КОВ)
  2. Предельные одноатомные и многоатомные спирты
  3. Изомерия и номенклатура спиртов
  4. Физические свойства спиртов
  5. Химические свойства спиртов
  6. Отдельные представители спиртов и их значение
  7. Шпаргалка
  8. Задания для самопроверки

Классификация спиртов

На самом деле существует множество разных видов спиртов, которых химики делят в зависимости от:

  • Количества функциональных групп в молекуле. Есть одноатомные и многоатомные спирты. К многоатомным спиртам относятся алкоголи и гликоли.
  • одноатомные и многоатомные спирты

  • Алкоголи в свою очередь делятся на первичные, вторичные и третичные.
  • алкоголи

  • И в зависимости от строения углеводородного радикала существуют алифатические и ароматические спирты, а также предельные и непредельные соединения.

Строение

Спиртами (или алканолами) называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп —ОН), соединенных с углеводородным радикалом.

• одноатомные• двухатомные (гликоли)• трехатомные.

• предельные, содержащие в молекуле лишь предельные углеводородные радикалы• непредельные, содержащие в молекуле кратные (двойные и тройные) связи между атомами углерода• ароматические, т. е. спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода.

Органические вещества, содержащие в молекуле гидрок-сильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений — фенолы. Например, гидроксибензол фенол.

Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит).

Непредельные спирты, содержащие гидроксильную группу у атома углерода, связанного двойной связью, называются еколами. Нетрудно догадаться, что название этого класса соединений образовано из суффиксов -ен и -ол, указывающих на присутствие в молекулах двойной связи и гидроксильной группы. Енолы, как правило, неустойчивы и самопроизвольно превращаются (изомеризуются) в карбонильные соединения — альдегиды и кетоны.

В молекуле предельного спирта атомы углерода и кислорода находятся в состоянии sp3 – гибридизации.

Одноатомные спирты

Угол Н-С-Н составляет 109,5°, С-O-H – 108,9° (в молекуле воды угол Н-О-Н равен 104,5°).

Прежде чем приступить к изучению спиртов необходимо разобраться с природой -OH группы и ее влияние на соседние атомы.

Функциональными груп­пами называются группы ато­мов, которые обуславливают характерные химические свой­ства данного класса веществ.

Строение молекул спир­тов R—OH. Атом кислорода, входящий в гидроксильную группу молекул спиртов, резко отличается от атомов водорода и углерода по способности притяги­вать и удерживать электронные пары. В молекулах спиртов имеются полярные связи C—O и O—H.

Учитывая полярность связи O—H и значительный положительный заряд на атоме водорода, говорят, что водород гидроксильной группы имеет «кислотный» характер. Этим он резко отли­чается от атомов водорода, вхо­дящих в углеводородный ради­кал. Атом кислорода гидро­ксильной группы имеет части­чный отрицательный заряд и две неподеленные электрон­ные пары, что дает возмож­ность молекулам спирта обра­зовывать водородные связи.

Спирт

Следовательно, водород гидроксильной группы в молекуле фенола имеет кислотный характер.

Влияние атомов в молекулах фенола и его про­изводных взаимно. Гидроксильная группа оказы­вает влияние на плотность π-электронного облака в бензольном кольце. Она понижается у атома угле­рода, связанного с ОН-группой (т. е. у 1-го и 3-го атомов углерода, метаположение) и повышается у соседних атомов углерода — 2, 4, 6-го — орто— и пара-положения.

Водородные атомы бензола в орто- и парапо­ложениях становятся более подвижными и легко замещаются на другие атомы и радикалы.

Альдегиды имеют общую формулу , где карбонильная группа

Под влиянием карбонильного атома углеро­да в альдегидах увеличивается полярность связи C—H, что повышает реакционноспособность этого атома H.

Карбоновые кислоты содержат функциональ­ноную группу

, называемую карбоксильной группой, или карбоксилом. Так она названа потому, что состоит из карбонильной группы

и гидроксильной —OH.

В карбоновых кислотах гидроксильная группа связана с углеводородным радикалом и карбониль­ной группой. Ослабление свя­зи между кислородом и водо­родом в гидроксильной группе объясняется разностью элек­троотрицательностей атомов углерода, кислорода и водоро­да. Атом углерода приобрета­ет некоторый положительный заряд.

Этот атом углерода притягивает к себе электронное облако от атома кис­лорода гидроксильной группы. Компенсируя сме­щенную электронную плотность, атом кислорода гидроксильной группы оттягивает к себе электрон­ное облако соседнего атома водорода. Связь O—H в гидроксильной группе становится более полярной, и атом водорода приобретает большую подвижность.

Изомерия одноатомных спиртов.

Номенклатура одноатомных спиртов, как и многоатомных, зависит от названия окружающих радикалов и строения их молекул. Например:

  • Тривиальная.
  • тривиальная номенклатура спиртов

  • Систематическая. Она основана на характеристике радикала и выборе углеродной цепи.
  • систематическая номенклатура спиртов

  • Карбинольная. В основе ее фигурирует название карбинол. На данный момент является устаревшей.

Для одноатомных спиртов характерна изомерия углеродного скелета и изомерия положения гидрокси-группы.

Как и другие органические соединения, спирты называют как по правилам рациональной номенклатуры (как замещенные метилового спирта — карбuнола), так и номенклатуры ИЮПАК. Для некоторых из них существуют тривиальные названия.

• Назвать самую длинную углеродную цепь, содержащую атом углерода, несущий группу —OH.• Отбросить окончание -ан от названия соответствующего алкана и добавить суффикс -ол. Если гидроксильных групп несколько, до добавить числительное, показывающее количество ОН-групп (-диол, -триол и т.д.)• Найти и пронумеровать самую длинную углеродную цепь, начиная с конца, ближайшего к группе —OH.• При необходимости указать положение группы -OH.• Назвать заместители, указать их количество и положение.

Предлагаем ознакомиться:  Полисорб перед алкоголем — schket

Самая длинная цепочка состоит из девяти атомов углерода, поэтому название корня – нона, суффикс -ол.

Группа —ОН находится у четвертого углеродного атома – нонанол — 4.

Одноатомные, двухатомные, трехатомные спирты

Также в данном соединении присутствует метильная и этильная группы у четвертого и шестого атомов углерода соответственно, а также атом хлора у третьего атома углерода.

Таким образом, полное название по системе IUPAC – 4-метил-6-этил-3-хлорнонанол-4

Нумеруем самую длинную цепочку с ближайшего к гидроксильной группе конца.

Она состоит из восьми атомов углерода, поэтому название корня – окта, суффикс -диол, т.к. в соединении содержится две ОН-группы.

Группы —ОН находятся у третьего и пятого углеродных атомов, значит это – октандиол – 3,5.

Также в данном соединении присутствуют две метильные группы у пятого и шестого атомов углерода.

Итак, полное название по систематической номенклатуре IUPAC – 5,6-диметилоктандиол-3,5.

Применение одноатомных спиртов.

Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп —ОН), соединенных с углеводородным радикалом.

Название спиртов по химии

Спирты с количеством атомов углерода меньше 15 представляют собой жидкости, а с большим количеством – твердые вещества.

Метанол, этанол и попанол -2 хорошо смешиваются с водой в неограниченных количествах, чего не могут спирты с большей атомной массой и большим углеводородным радикалом. Спирты имеют высокие температуры кипения и плавления, что говорит об образовании водородных связей.

Реакция идет по правилу Марковникова, поэтому из первичных алкенов можно получить только певичный спирт.

Реакция протекает в присутствие никелевого катализатора.

Специфическая особенность одноатомных спиртов: атом водорода отщепляется от спирта, а гидрокси-группа – от кислоты.

Название спиртов по химии

Третичные спирты окисляются с разрывом С-С связи.

Спирты используют преимущественно в промышленном органическом синтезе, в пищевой промышленности, в медицине и фармации.

Физические свойства спиртов

Низкомолекулярный спирт – это обычно бесцветная жидкость, имеющая при этом резкий и характерный запах. Температура кипения спирта выше, нежели у других органических соединений. Это обусловлено тем, что в молекулах спиртов имеется особый вид взаимодействий – водородные связи. Вот как они выглядят.

По причине своего строения спирты проявляют амфотерные свойства: основные и кислотные, далее детально на них остановимся:

  • Кислотные свойства спиртов проявляются в способности отщепления протона гидроксигруппы. По мере роста длины углеродной цепи, объема ее радикала, а также степени разветвления и наличия в молекуле доноров, кислотность уменьшается.
  • Основные свойства спиртов являются обратными к их кислотным свойствам, так как они выражаются в их способности, наоборот, присоединить протон.

Алкоголи и гликоли имеют особенность вступать в химические реакции замещения, отщепления и окисления. Опишем их детальнее:

  • Реакции замещения протекают с образованием солей (алкоголятов и гликолятов металлов), а также сложных эфиров и галогенопроизводных.
  • реакция замещения спиртов

  • Реакции отщепления происходят по внутримолекулярному или межмолекулярному типу с отщеплением воды и получением алкенов и простых эфиров.
  • реакция отщепления спиртов

  • Во время реакций окисления спиртов образуются оксосоединения (альдегиды и кетоны).

Спирты могут образовывать водородные связи как между молекулами спирта, так и между моле­кулами спирта и воды.

Водородные связи возникают при взаимодей­ствии частично положительно заряженного атома водорода одной молекулы спирта и частично отри­цательно заряженного атома кислорода другой молекулы. Именно благодаря водородным связям между молекулами спирты имеют аномально высо­кие для своей молекулярной массы температуры кипения.

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя угле­водородные и гидроксильные радикалы, поэтому химические свойства спиртов определяются взаи­модействием и влиянием друг на друга этих групп.

Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

Данная реакция обратима.

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при на­гревании этилового спирта с серной кислотой до температуры от 100 до 140 °С образуется диэтило­вый (серный) эфир.

Реакция этерификации катализируется силь­ными неорганическими кислотами.

Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (силь­ный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.

Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты.

Химические свойства спиртов – конспект

Учитывая полярность связи О—Н и значительный частичный положительный заряд, локализованный (сосредоточенный) на атоме водорода, говорят, что водород гидроксильной группы имеет «кислотный» характер. Этим он резко отличается от атомов водорода, входящих в углеводородный радикал.

Необходимо отметить, что атом кислорода гидроксильной группы имеет частичный отрицательный заряд и две неподеленные электронные пары, что дает возможность спиртам образовывать особые, так называемые водородные связи между молекулами. Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы.

Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения. Так, пропан с относительной молекулярной массой 44 при обычных условиях является газом, а простейший из спиртов — метанол, имея относительную молекулярную массу 32, в обычных условиях жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов, содержащие от одного до одиннадцати атомов углерода, — жидкости. Высшие спирты (начиная с С12Н25ОН) при комнатной температуре — твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в воде.

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные радикалы, поэтому химические свойства спиртов определяются взаимодействием и влиянием друг на друга этих групп. Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал, с одной стороны, и вещества, содержащего гидроксильную группу и не содержащего углеводородный радикал, — с другой.

С водой это взаимодействие идет значительно активнее, чем со спиртом, сопровождается большим выделением тепла, может приводить к взрыву. Это различие объясняется электронодонорными свойствами ближайшего к гидроксильной группе радикала. Обладая свойствами донора электронов ( I-эффектом), радикал несколько повышает электронную плотность на атоме кислорода, «насыщает» его за свой счет, уменьшая тем самым полярность О—Н-связи и «кислотный» характер атома водорода гидроксильной группы в молекулах спиртов по сравнению с молекулами воды.

Предлагаем ознакомиться:  Пропорции самозамеса для электронных сигарет

2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов.

С2Н5ОН НВг {amp}lt;-{amp}gt; С2Н5Вг Н2O

Одноатомные спирты

Данная реакция обратима.

3. Межмолекулярная дегидратация спиртов — отщепление молекулы воды от двух молекул спирта при нагревании в присутствии водоотнимающих средств.

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от 100 до 140 °С образуется диэтиловый (серный) эфир.

Реакция этерификации катализируется сильными неорганическими кислотами.

5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры, чем температура межмолекулярной дегидратации. В результате ее образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксиль-ной группы при соседних атомах углерода.

Способы получения

Одноатомные спирты можно получить из алкенов, сложных эфиров, оксосоединений, карбоновых кислот и галогенопроизводных.

А вот спирт этанол можно получить при помощи брожения сахаристых веществ, химическая реакция будет иметь такой вид.

Многоатомные спирты образуются из многоосновных кислот, сложных эфиров, алкенов и оксосоединений.

Одноатомные спирты

А для получения глицерина можно применить гидролиз в кислой среде триацилглицеринов – основных компонентов липидной фракции жиров и растительных масел.

1. Гидролиз галогеналканов. Вы уже знаете, что образование галогеналканов при взаимодействии спиртов с галогено-водородами — обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов — реакции этих соединений с водой.

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле.

2. Гидратация алкенов — присоединение воды по тг-связи молекулы алкена — уже знакома вам. Гидратация пропена приводит в соответствии с правилом Марковникова к образованию вторичного спирта — пропанола-2

ОНlСН2=СН—СН3 Н20  -{amp}gt;  СН3—СН—СН3пропен                           пропанол-2

3. Гидрирование альдегидов и кетонов. Вы уже знаете, что окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов.

4. Окисление алкенов. Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена).

5. Специфические способы получения спиртов. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают при взаимодействии водорода с оксидом углерода(II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка).

Необходимую для этой реакции смесь угарного газа и водорода, называемую также (подумайте почему!) «синтез-газ», получают при пропускании паров воды над раскаленным углем.

6. Брожение глюкозы. Этот способ получения этилового (винного) спирта известен человеку с древнейших времен.

Рассмотрим реакцию получения спиртов из галогеналканов — реакцию гидролиза галогенпроизводных углеводородов. Ее обычно проводят в щелочной среде. Выделяющаяся бромоводородная кислота нейтрализуется, и реакция протекает практически до конца.

Эта реакция, как и многие другие, протекает по механизму нуклеофильного замещения.

Это реакции, основной стадией которых является замещение, протекающее под воздействием нуклеофильной частицы.

Напомним, что нуклеофильной частицей является молекула или ион, имеющая неподеленную электронную пару и способная притягиваться к «положительному заряду» — участкам молекулы с пониженной электронной плотностью.

Наиболее распространенными нуклеофильными частицами являются молекулы аммиака, воды, спирта или анионы (гидроксил, галогенид, алкоксид-ион).

Частицу (атом или группу атомов), замещаемую в результате реакции на нуклеофил, называют уходящей группой.

Одноатомные спирты

СН3СН2ОН НВг —{amp}gt; СН3СН2Вг Н20

СН3СН2—ОН Н —{amp}gt; СН3СН2— ОН

Под действием присоединившегося положительно заряженного иона связь С—О еще больше смещается в сторону кислорода, эффективный положительный заряд на атоме углерода увеличивается.

Это приводит к тому, что нуклеофильное замещение на галогенид-ион происходит гораздо легче, а отщепляется под действием нуклеофила молекула воды.

СН3СН2—ОН Вг —{amp}gt; СН3СН2Вг Н2O

При действии алкоголята натрия на бромэтан происходит замещение атома брома на алкоголят-ион и образуется простой эфир.

R – X HNu -{amp}gt; R – Nu HX,

если нуклеофильной частицей является молекула (НВг, Н20, СН3СН2ОН, NН3, СН3СН2NН2),

R—X Nu- —{amp}gt; R—Nu Х-,

если нуклеофилом является анион (ОН , Вг-, СН3СН2O-), где X — галоген, Nu — нуклеофильная частица.

Применение одноатомных спиртов.

Помимо алкогольных напитков разной крепости спирты применяются в косметологии при создании разных косметических средств (например, тех же одеколонов), и, разумеется, в медицине, как при создании разных лекарств, эфиров, так и в бытовом применении спирт может служить дезинфицирующим средством.

Так как спирты имеют разнообразные свойства, то и область из применения довольно таки обширна. Давайте с вами попробуем разобраться, где же применяются спирты.

Отдельные представители спиртов и их значение

Метанол (метиловый спирт СН3ОН) — бесцветная жидкость с характерным запахом и температурой кипения 64,7 °С. Горит чуть голубоватым пламенем. Историческое название метанола — древесный спирт — объясняется одним из способов его получения — перегонкой твердых пород дерева (греч.  — вино, опьянеть;  вещество, древесина).

Метанол очень ядовит! Он требует осторожного обращения при работе с ним. Под действием фермента алкогольде-гидрогеназы он превращается в организме в формальдегид и муравьиную кислоту, которые повреждают сетчатку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

Этанол (этиловый спирт С2Н5ОН) — бесцветная жидкость с характерным запахом и температурой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют продукт, полученный из пищевого сырья и содержащий 96% (по объему) этанола и 4% (по объему) воды.

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноотделимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют денатурированным или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекарственных препаратов, применяется как растворитель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт — важнейшее дезинфицирующее средство. Используется для приготовления алкогольных напитков.

Одноатомные спирты

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможения в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увеличивается водоотделение в клетках и, следовательно, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение кровеносных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощущению теплоты.

В больших количествах этанол угнетает деятельность головного мозга (стадия торможения), вызывает нарушение координации движений. Промежуточный продукт окисления этанола в организме — ацетальдегид — крайне ядовит и вызывает тяжелое отравление.

Предлагаем ознакомиться:  Симптомы и признаки цирроза печени у мужчин. Признаки цирроза печени у мужчин

Систематическое употребление этилового спирта и содержащих его напитков приводит к стойкому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соединительной тканью — циррозу печени.

Этандиол-1,2 (этиленгликоль) — бесцветная вязкая жидкость. Ядовит. Неограниченно растворим в воде. Водные растворы не кристаллизуются при температурах, значительно ниже О °С, что позволяет применять его как компонент незамерзающих охлаждающих жидкостей — антифризов для двигателей внутреннего сгорания.

Пропантриол-1,2,3 (глицерин) — вязкая, сиропообразная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной части сложных эфиров входит в состав жиров и масел. Широко используется в косметике, фармацевтической и пищевой промышленности. В косметических средствах глицерин играет роль смягчающего и успокаивающего средства.

Его добавляют к зубной пасте, чтобы предотвратить ее высыхание. К кондитерским изделиям глицерин добавляют для предотвращения их кристаллизации. Им опрыскивают табак, в этом случае он действует как увлажнитель, предотвращающий высыхание табачных листьев и их раскрошивание до переработки. Его добавляют к клеям, чтобы предохранить их от слишком быстрого высыхания, и к пластикам, особенно к целлофану.

1. Какие вещества называются спиртами? По каким призна-[ кам классифицируют спирты? К каким спиртам следует – отнести бутанол-2? бутен-З-ол-1? пентен-4-диол-1,2?

2. Составьте структурные формулы спиртов, перечисленных в упражнении 1.

Одноатомные спирты

3. Существуют ли четвертичные спирты? Объясните ответ.

4. Сколько спиртов имеют молекулярную формулу С5Н120? Составьте структурные формулы этих веществ и назовите их. Только ли спиртам может соответствовать эта формула? Составьте структурные формулы двух веществ, имеющих формулу С5Н120 и не относящихся к спиртам.

6. Напишите структурную и эмпирическую формулы вещества, название которого 5-метил-4-гексен-1-инол-3. Сравните число атомов водорода в молекуле этого спирта с числом атомов водорода в молекуле алкана с таким же числом атомов углерода. Чем объясняется это различие?

7. Сравнив электроотрицательности углерода и водорода, объясните, почему ковалентная связь О—Н более поляр-на, чем связь С—О.

8. Как вы думаете, какой из спиртов — метанол или 2-ме-тилпропанол-2 — будет активнее реагировать с натрием? Объясните свой ответ. Составьте уравнения соответствующих реакций.

9. Составьте уравнения реакций взаимодействия пропанола-2 (изопропилового спирта) с натрием и бромоводородом. Назовите продукты реакций и укажите условия их осуществления.

Одноатомные спирты

10. Смесь паров пропанола-1 и пропанола-2 пропустили над нагретым оксидом меди(П). Какие реакции могли произойти при этом? Составьте уравнения этих реакций. К каким классам органических соединений относятся их продукты?

11. Какие продукты могут образоваться при гидролизе 1,2-дихлорпропанола? Составьте уравнения соответствующих реакций. Назовите продукты этих реакций.

12. Составьте уравнения реакций гидрирования, гидратации, галогенирования и гидрогалогенирования 2-пропе-нола-1. Назовите продукты всех реакций.

13. Составьте уравнения взаимодействия глицерина с одним, двумя и тремя молями уксусной кислоты. Напишите уравнение гидролиза сложного эфира — продукта этерификации одного моля глицерина и трех молей уксусной кислоты.

14*. При взаимодействии первичного предельного одноатомного спирта с натрием выделилось 8,96 л газа (н. у.). При дегидратации той же массы спирта образуется алкен массой 56 г. Установите все возможные структурные формулы спирта.

15*. Объем углекислого газа, выделившегося при сжигании предельного одноатомного спирта, в 8 раз превосходит объем водорода, выделившегося при действии избытка натрия на то же количество спирта. Установите строение спирта, если известно, что при его окислении образуется кетон.

Метанол (метиловый спирт CH3OH) — бесцветная жид­кость с характерным запа­хом и температурой кипения 64,7 °С. Горит чуть голубова­тым пламенем. Историческое название метанола — дре­весный спирт объясняется одним из путей его полу­чения способом перегонки твердых пород дерева (греч. methy — вино, опьянеть; hule — вещество, древесина).

Метанол требует осторожного обращения при работе с ним. Под действием фермента алкогольдегидрогеназы он превращает­ся в организме в формальде­гид и муравьиную кислоту, которые повреждают сетчат­ку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

Этанол (этиловый спирт C2H5OH) — бесцветная жидкость с характерным запахом и температу­рой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют про­дукт, полученный из пищевого сырья и содержа­щий 96 % (по объему) этанола и 4 % (по объему) воды.

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноот­делимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют дена­турированным, или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекар­ственных препаратов, применяется как раствори­тель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт — важнейшее дезинфицирующее средство. Используется для при­готовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможе­ния в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увели­чивается водоотделение в клетках и, следователь­но, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение крове­носных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощу­щению теплоты.

В больших количествах этанол угнетает дея­тельность головного мозга (стадия торможения), вызывает нарушение координации движений. Про­межуточный продукт окисления этанола в организ­ме — ацетальдегид — крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спир­та и содержащих его напитков приводит к стой­кому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соедини­тельной тканью — циррозу печени.

Одноатомные спирты

Этандиол-1,2 (этиленгликоль) — бесцветная вязкая жидкость. Ядовит. Неограниченно раство­рим в воде. Водные растворы не кристаллизуются при температурах значительно ниже 0 °С, что по­зволяет применять его как компонент незамерзаю­щих охлаждающих жидкостей — антифризов для двигателей внутреннего сгорания.

Пролактриол-1,2,3 (глицерин) — вязкая сиропо­образная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной ча­сти сложных эфиров входит в состав жиров и масел.

Широко используется в косметике, фармацевтиче­ской и пищевой промышленностях. В косметических средствах глицерин играет роль смягчающего и успо­каивающего средства. Его до­бавляют к зубной пасте, чтобы предотвратить ее высыхание.

Шпаргалка

Ссылка на основную публикацию
Adblock detector